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Hamiltonian Limit of the 
3D Zamolodchikov Model 
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A two-dimensional quan tum Hamiltonian J~N,M commuting with the layer-to- 
layer transfer matrix of the three-dimensional Zamolodchikov model is derived. 
This Hamiltonian is defined on a lattice of N x M sites. The special cases 
N x  2, 2 • M, and 3 x M are studied. 
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1. I N T R O D U C T I O N  

The feature underlying the solvability of many two-dimensional statistical 
mechanical models is the existence of a one-parameter family of commuting 
one-dimensional transfer matrices. (1) These transfer matrices are para- 
metrized by a so-called spectral parameter. Often there is an associated 
commuting quantum Hamiltonian J~fN. This is an operator on a one- 
dimensional chain of N sites, and is the logarithmic derivative of the 
transfer matrix with respect to the spectral parameter, evaluated at a value 
of the spectral parameter where the transfer matrix has a particularly 
simple form, e.g., at a value where it is a simple shift operator. The 
Hamiltonian associated with the symmetric eight-vertex model, for 
example, is the Heisenberg or X Y Z  chain operator. 

The only three-dimensional statistical mechanical model that has been 
solved to date using the method of commuting transfer matrices is the 
Zamolodchikov model. (2 6) This model is a spin model on a simple cubic 
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lattice, whose interactions are determined by three parameters 0~, 02, and 
03. One can think of these parameters as being associated with the vertical, 
left-to-right, and front-to-back directions, respectively. The model is sym- 
metric under a permutat ion of the 0i combined with the associated rotation 
of the lattice. In this paper we derive the Hamiltonian associated with the 
Zamolodchikov model. There are some differences from the above discus- 
sion. First of all, for fixed 01, the two-dimensional transfer matrices 
T[01, 02, 03] working in the vertical direction form a commuting family, 
parametrized by two spectral parameters 02 and 03. For  02 = 0 the transfer 
matrix is a simple shift operator, so we want to differentiate with respect 
to 02 at this point. This means that our resulting Hamiltonian ~N,M 
defined on a two-dimensional square lattice of N by M sites no longer pos- 
sesses the aforementioned symmetry under rotation. Also, 24~ will turn 
out to be a linear combination of two mutually commuting Hermitian 
operators. Finally, because the transfer matrix in this case is even in 02, we 
have to take the second logarithmic derivative and this causes our 
Hamiltonian to be nonlocal in the left-to-right direction. 3 

Our  motivation for this study is the fact that it is thought that the 
Zamolodchikov model is in some sense a free-fermion model. (7) If this is so, 
one might hope that the model could be solved also on a finite lattice of 
L by M by N sites (the solution in ref. 6 was for a lattice of L x oe x oe; in 
ref. 8 it was shown that for L or M or N equal to 2, the Zamolodchikov 
mdel is equivalent to the critical 2D free-fermion model). It is easiest to 
investigate this possibility in a limiting case, i.e., the Hamiltonian limit. We 
have, however, not been able to solve the Hamiltonian model for general 
N and M except for the case N = 2 and the case M = 2. We have succeeded 
in finding an invariant subspace in which ~ ,  M effectively reduces to a sum 
of local operators working on a one-dimensional spin chain of M sites, but 
so far this reduced model has resisted solution. In particular, we have failed 
to observe any "direct sum" structure in numerical calculations of the 
eigenvalue spectrum of ~3,M performed by Dr. M. Batchelor. 

2. Z A M O L O D C H I K O V  M O D E L  

The partition function of a statistical mechanical spin model on the 
simple cubic lattice 5 ~ with only intracube interactions (so-called inter- 
actions-around-a-cube models) is given by 

Z=}~ [~ W(a,e,f,g,b,c,d,h) (2.1) 
a c u b e s  

3 Actually, the transfer matrix is even in auxiliary parameters K 1,..., K4, expressed in terms of 
01, 02, 03 in Eqs. (2.4) (2.6). 
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where a,..., h are the eight corner spins of a cube, arranged as in Fig. 1, and 
W(a, e, f, g, b, c, d, h) is the Boltzmann weight of the spin configuration 
a,..o, h. The product is over all elementary cubes in ~,~', and the sum is over 
all values of all the spins. In this paper  we only consider periodic boundary 
conditions. In that case the partition function Z can be written 

Z = Trace T c (2.2) 

where T is the horizontal layer-to-layer transfer matrix and L is the 
number of layers. The elements of T are the products of the weight 
functions of cubes between two adjacent layers. 

The 3D Zamolodchikov model is defined as follows. Let 0~, 02, 03 be 
three arbitrary real parameters between 0 and 7r. It is helpful to think of 0~, 
02, 03 as the three angles of a spherical triangle (see Fig. 2). The Boltzmann 
weight function for the model (apart from a nonessential overall constant 
and a simple gauge transformation) is then given by (6) 

W(a,e,f ,  g ,b ,c ,d ,h )  

= �89 exp(K1ag + K2bf+  K3dh + K4ce) 

+ � 8 9  (2.3) 

Here 

where 

tanh 2K1 "= -e"~ T2, 

tanh 2K~ "= - e  '"3T 1 T2, 

tanh 2K 2 := -iei"3T2/T1 

tanh 2K4 := ie-'"~T2/T1 

TI ' =  [tan(01/2)] ~/2, T2 "= [tan(02/2)] ~/2 

(2.4) 

(2.5) 

Fig. 1. 
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Arrangement of the spins a,..., h on the corner sites of an elementary cube of the 
simple cubic lattice 5 ~ . 
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and the side of the spherical triangle a3 (see Fig. 2) is given by (91 

COS 03 -~- COS 01 COS 02 
COS a 3 -- sin 01 sin 02 (2.6) 

The spins a,..., h each take the values + 1 and - 1. The function W(a ..... h) 
has several symmetries. In particular, it is unchanged by negating all the 
spins on one face in Fig. 1 (e.g., a, f ,  b, g). Further, negating a, b, c, d or 
e,f, g, h changes W at most by a sign. Clearly the transfer matrix T is a 
function of 01, 02, 03 (as well as of the spins), so we can exhibit this 
dependence as 

T = - T [ O 1 ,  02, 03]  (2.7) 

Zamolodchikov conjectured, (2"3~ and it was proved by Baxter, (4) that any 
two transfer matrices T[OI, 02,033 , T[O'I, 0~, 0 ;3  commute provided only 
that 0'1 = 01. This commutativity enables one to calculate the free energy of 
the model. Let us now see what this means in terms of the parameters Ki. 
First note that K1,..., K4 are not independent. From Eq. (2.4) it follows that 

tanh 2K1 tanh 2K4 + tanh 2K 2 tanh 2K3 = 0 (2.8) 

Second, two transfer matrices T[KI,  K21 K 3,/s T[K~, K'2, 1s K'43 
commute provided 

tanh 2K2 tanh 2K 4 tanh 2K~ tanh 2K;, 
- -  - ( 2 . 9 )  
tanh 2K1 tanh 2K3 tanh 2K'1 tanh 2K~ 

We introduce the face spins 

ct := chbg, /3:= afde 

7 := afbg, 6 : =  cedh (2.10) 

5 : =  bdfh, ~ : =  agce 

Fig. 2. 

a l  

The spherical triangle, with angles 01, 02, 03 and sides a~, a2, a 3. 



3D Zamolodchikov Model 415 

Since these face spins satisfy 

~/~ = ~a = ~ (2.11 ) 

we can replace Fig. 3 by Fig. 4. There are two types of vertices. 
Vertices of type 1: 

~o/= 1, W= cosh(K, +K2y+K3fi~+K4~ ) (2.12a) 

Vertices of type 2: 

c~y= --1, W=agsinh(Kl + K2?'- K3fl~ + K4~ ) (2.12b) 

would be convenient if the weight function W could be expressed in It 
terms of the face spins alone. This is not quite possible. What does turn out 
to be feasible, however, is to express the product of the weight functions of 
all cubes in a left-to-right row of the lattice in terms of the face spins alone 
(see Fig. 5). Remembering that we have periodic boundary conditions, it 
follows that 

(2.13) ~1~2 " ' ' O ~ N =  f i l ] ~ 2 " ' ' f i N =  ~)l ~) 2 "*" T N  = 1 

-?, 

Og 

3 

Fig. 3. A vertex with the face spins :~, fl, y, 8, e, ~. 
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3' 

Fig. 4. 

/- 

Og 

O/ 33, 
The vertex of Fig. 3, after the dependence among the face spins has been eliminated. 

Hence  

0~1710{2'~2 " ' ' ~ N T N  = 1 (2.14) 

so we see from Eq. (2.12) tha t  there  are an even number  of vertices of 
type 2. This has two consequences  for the weight of a lef t- to-r ight  row. 
F i rs t  of  all, there is an even number  of factors a i g i  con t r ibu t ing  to the 
weight of each such row. These can be expressed in terms of the face 
weights 

a i g i a j g j = H  7 i " ' 7 j  i (2.15) 

1 2 . . . .  N 1 

Fig. 5. A left-to-right row of the lattice. 
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and hence so can the weight of a left-to-right row. Second, the weight of 
a left-to-right row, and hence the transfer matrix and the partition function, 
are even under negation of all interaction parameters K i simultaneously. 
From Eq. (2.13) we also see that there is an even number of vertices with 

~fl = -1 .  

3. T H E  L I M I T  K1 " " " K 4 - ~ 0  

We now want to investigate the limit 0 2 ~ 0  and expand about 
this limiting case. From Eqs. (2.4)-(2.6) it follows that in this limit 
Kx ..... /s From Eq. (2.3) it is then clear that 

W(a, e,f,  g, b, c, d, h)--,6(afch, 1) (3.1) 

From Eq. (2.10) we see that this implies 

W(c~,/3, 7, ~) ~ 6(~, 7) (3.2) 

Hence, at lowest order, all vertices are of type 1. 
So, at this order, the weight of a left-to-right row of the lattice is 

N 

Po = 2  I1 6(%, 7j) (3.3) 
, /=  1 

where we have performed the summation over one ~j, all other ff's being 
determined by the c~j and/3j. 

If we want to calculate the contribution at next order to the weight of 
a left-to-right row, we must go to quadratic order in K because the weight 
function is even in K. At second order there are two sorts of terms con- 
tributing. We will consider these two different quadratic contributions one 
at a time. 

3.1. The Q u a d r a t i c  C o n t r i b u t i o n s  of  V e r t i c e s  of  Type  1 

For a vertex at site i we get a contribution at second order Ecf. 
Eq. (2.12a) and Fig. 6] 

�89 + K2cq+ K3fl,~,+ K4~i) 2 6(cq, ,/~) (3.4) 

For the contribution to the weight of a left-to-right row we get 

N 

/ ' ,  = l-(& + &~c,,) 2 + (x3/3, + K4) 2] 1-i 6(, : ,  ~j) (3.5) 
i - 1  

where we have performed the summation over ~, all other ~'s being deter- 
mined by the c~/, fl/, 7/- 
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Og 

O/ 

Fig. 6. A vertex of type 1 [Eq. (2.12a)]. 

3.2. T w o  Vert ices of Type 2, Combining to Give a Quadrat ic  
Contr ibut ion 

The linear terms of two vertices of type 2 combine to yield a quadratic 
contribution (remember that there is always an even number of vertices of 
type 2). A vertex of type 2 has the form of Fig. 7. 

As an example, let us consider the case that the two vertices of type 2 
are at sites 4 and 7 in a left-to-right row, respectively (see Fig. 8). From the 
two vertices at sites 4 and 7 we get the following contributions Ecf. 
Eqs. (2.12) and (2.15)] 

--~40~50{6(K1 - -  K2c~ 4 -  K3f14~  4 q- K 4 ~ 4 )  

x ( K  l - -  K2o~ 7 - -  K3~4~4o~5o~6f14flsf16fl  7 q- K4~4o~4~5~6f la f l s f16 )  

X (~(0~4, - - 7 4 )  ~(0~7, - - 7 7 )  (3 .6 )  

For the contribution to the weight of a left-to-right row we get 

PI = - c ~ 4 ~ 5 ~ 6 ( K 1  - K 2 ~ 4  - K3/~4~4 + K 4 ~ 4 )  

x ( g  I - g20~ 7 - g3~40~4~5~6f14f15]~6fl  7 --t- g4ff40~40~5 ~6]~4f15f16) 

N 

x 6(~4, -74 )  6(57, -77)  I~ 6(c~j, 7j) (3.7) 
] =  1 
~-4,7 
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-OL 

. . . . . .  

Fig. 7. A vertex of type 2 [Eq. (2.12b)]. 

Averaging over ~4 = -+1, this becomes 

- 2 [ ~ 4 ~ 5 ~ 6 ( K  1 - -  K 2 0 ~ 4 ) ( K  1 - K 2 ~ 7 )  + f 1 5 f 1 6 f l T ( K 3  - K4f14 )  

N 

• (Ks-K4fl:)]6(o~4, - ~ 4 )  6(~7, - 7 7 )  1~ 6(5/, 7/) 

~-4,7 

(3.8) 

4. H A M I L T O N I A N  L I M I T  OF T H E  T R A N S F E R  M A T R I X  

We will now consider what happens to an entire horizontal layer of 
the lattice. In Figs. 9 and 10 we have sketched schematically the case when 

% _,, 

"6 

"4 '~ a' ~ " ~  

\5 
-~ 8 2 

Fig. 8. 

\ 

A left-to-right row of the lattice, with two vertices of type 2, at sites 4 and 7, 
respectively. 

822/58/'3-4-2 
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i )N 
i 

Fig. 9. A horizontal layer of the lattice with all vertices being of type 1. 

all vertices are of type 1 and the case where two vertices in one left-to-right 
row are of type 2, respectively. 

The transfer matrix for the general case can be expanded in powers of 
the interaction parameters Ki. Symbolically, we can write this expansion as 
follows: 

T =  T o + T I ( K  2) + O ( K  4) (4.1) 

The zero th-order  term To in Eq. (4.1) is given by the lowest order  contr ibu-  
t ion of configurat ions which only have vertices of type 1 (Fig. 9). 

M 

To(-61,-62,.--1_71,y2,..,) = l-I ~(7~, ~k+~) (4.2) 
k = l  

{To is equal to T[O~, O, 03] of Eq. (2.7)}. 

V 

\ 
1 

> 
1 N 

J 
Fig. 10. A horizontal layer of the lattice with two vertices in one left-to-right row of type 2, 

all other vertices being of type 1. 
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Equat ion  (4.1) can be rewritten 

T o  l T = { + T o IT1 (K 2) + O(K 4) (4.3) 

and we are interested in calculating the quadrat ic  term in this equat ion 

M ~ 1 1 
•N,M :=  T o ' T =  ~. z~ ~(KIAvK2Sj, k)2Jv-~(K3JvK4Sj.k 1) 2 

k=l j= l  

M 
+ Y~ Y~ C*,kCj, k[Si, , ,Si+l,k' ' 'S i l,k 

k-1  l<~i<j<~N 

x (K, + K2Si, k)(K, + K2sjk ) 

q- S i +  1, k I""Sj ,  k_ I (K3+K4s i ,  k -1 )  

X(Kgq-K4Sj,  k-1)]Ci,  k ICj, k -1  (4.4) 

where the operators  s).e and cj, k (also known as the Pauli  spin operators  
0[j[k and r are defined by (ref. 1, p. 83) 

N M 

( s j ,0~ , :=  ~j,, FI H ,~(y ..... ~n,~) 
n = l  m = l  

N M" (4,5) 

(cj ,@: := ~(7j,,, -aj,~) [ I  IF[ es(2 . . . .  a .... ) 
n = l  m = l  
(n,m) r 

Each term in the opera tor  J~N,M commutes  with 

Rk = Sl,kS2,k'''SN.k, k = 1 ..... M 

and with 

(4.6) 

S j  : = Sj ,  I S j ,  2 " ' '  Sj,  M ,  j =  l ..... N (4.7) 

Note  that  not  all these symmetries are independent,  

M N 

H Rk= I~ Sj (4.8) 
k = l  / = 1  

For  the Zamolodch ikov  model  with periodic boundary  conditions we have 

R k = Sj = "~, Vj, k (4.9) 
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Omitting an additive scalar multiple of the identity, we can rewrite the 
Hamiltonian Jt~U,i as 

M N 

oVtaN, M = ~ • (K~K2+K3K4)sj, k 
k ~ l  j = l  

M 

~- ~ ~ Ci, kCj, kESi, k ' ' ' S j  I&(Ki + K2si, k ) (KI  + K2sj, k) 
k = l  l<~i<j<~N 

~-Si+l, k l ' ' ' S j ,  k I ( K 3 + K 4 s i &  , ) ( K 3 + K 4 s j ,  k , ) ]c i ,  k lCj, k -1  

(4.10) 

This Hamiltonian appears not to be translation invariant. This invariance 
is restored if we impose (4.9). From Eq. (2.8) it follows that at this order 
the interaction parameters satisfy 

Defining 

K1K 4 + K2K 3 = 0 (4.11) 

K2 K4 
x . -  K 1 -  K3 (4.12} 

we can write the Hamiltonian as 

M N 
HN, M = Z  2 2 2 x(K1-- K3)sj, k 

k - I  j--1 
M 

~ - 2  2 Ci, kCj, kCi, k 1C],k 1 
k--I l<~i<j<~N 

x EK~s,,k " . #  l&(1 +XSi, k)(1 q-X6,k)  

-- K2S i+ l , k -1  " "'Sj, k - l ( l  ~-XSi, k--1)(1 -~ XSj, k 1)]  

Hence we can write 

HN, M = - iK~XN,  M + iK 2 YN, M 

where 

XN, M := iAN, M~- ixBN, M+ ix2CN, M 

YN, M : =  iDN, M ~- iXEN, M -t- iX2FN, M 

and A N,M,..., FN, M are independent of x and are given by 

M 

AN, M : =  Z E Ci, kCj, kCl,k--lCj, k 1Si, k ' ' ' S j - - l , k  
k I l~i<j<~N 

(4.13) 

(4.14) 

(4.15) 

(4.16a) 
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M N M 

k--1 j - 1  k--1 l<~i<j~N 

x si, k . . . s j_  1,k(si,~ + sj, k) (4.16b) 

M 
CN, M "= ~ 2 C~,kCj, kC,,k ~Cj, k--lS,+l.k' ' 'Sj, k (4.!6C) 

k--I l<~i<j~N 

M 
DN, U :=  E E Ci, kCj, kCi, k_lCj, k_lSi+I.k-1 "''Sj, k , (4.16d) 

k - I  l ~ i < j ~ N  

M N M 

k=l j= l  k=l  l~i<j<~N t~*-~ta.l~e~ 

xSi+x,k l ' " s j ,  k l(s~,~_l+sj, k 1) 

M 
FN, M "= E E C,,kCj, kCr k - l S , , k - I " ' ' S j - I , ~ - ,  (4.16f) 

k - 1  l<~i<j<~N 

It is easy to check that if x is purely imaginary [this is the case if K 1 ..... K 4 
are defined by (2.4)], then XN, M and YN, M are Hermitian. Moreover, from 
the discussion in Section 2 it follows that if we take the limit K1 ..... /s --* 0 
such that the ratio x defined in Eq. (4.12) remains finite, then sufficient 
conditions for the operators XN, M(X) and YN, M(X') to commute are that (i) 
x = x', (ii) R k = ~ for all k, and (iii) S j=  ~ for all j. We will now sketch a 
proof, using only the conditions (i) and (ii), i.e., we will prove that 

JAN, M, DN, M] = 0  (4.17a) 

[AN, A4, EN, M] + [BN, M, DN, M] = 0  (4.17b) 

JAN, M, FN, M] + [ B N y ,  EN, M]-- + [CN.M, DN, M] = 0  (4.17C) 

[BN, M, FN, M]-- + [CN, M, EN, M]-  = 0  (4.17d) 

[CN, M, FN, M] = 0  (4.17e) 

The first and last of these equations are easy to prove because actually each 
term of AN, M commutes with each term of DX, M and likewise each term of 
CN, M commutes with each term of FN, M. To prove the remaining equations 
we will make use of two symmetry operations, the vertical reflection V and 
the inversion I, defined by 

V(Sj, k) := SN+ I--j,k-, V(Cj, k) := CN+I j,k 
(4.18) 

I(sj, k) : =  S N + I _ j , M + I _ k ,  I(Cj, k) := C N + I _ j , M + I _  k 
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The operators A,..., F (dropping the subscripts N and M) then have the 
following symmetry properties: 

V(A)  = C, V(B) = B, V(D) = F, V(E) = E 
(4.19) 

I ( A ) = D ,  I ( B ) = E ,  : ( C ) = F  

These relations imply that (4.17b) and (4.17c) are equivalent to 

I( [A, E] _ ) = [A, E] 
(4.20) 

I (2[A,F]  + [ B , E ]  ) = 2 [ A , F ]  + [ B , E ] _  

i.e., [A, E l_  and 2[A, F ]_  + [B, E] should be invariant under the 
inversion operation. We have verified this by explicit bookkeeping. 
Equation (4.17d) then follows from Eq. (4.17b) by applying the vertical 
reflection operation. This completes the proof of (4.17), yielding an inde- 
pendent check of our workings and those of ref. 4. 

For x = +1 the operator 1 + xs is a projection operator and we see 
that in that c a s e  ~N,M has a large number of eigenvectors that are 
annihilated by each term in the second double sum in Eq. (4.13) 

In the next three sections the Hamiltonian ~u.~4 given by Eq. (4.13) 
will be discussed for the special case M = 2, and the cases N = 2 and N = 3, 
respectively. 

5. M = 2 :  THE T W O - R O W  CASE 

In the case M = 2 we restrict ourselves to the subspace where 

sj, lsj, s = ~, vj (5.1) 

[with this choice ~v,2 corresponds to the Zamolodchikov model with 
periodic boundary conditions; cf. Eq. (4.9)], i.e., we consider the subspace 
spanned by 

11 and A j ' =  1 

It is easy to verify that 

C j, 1 CL 2 A j  -~- B j ,  

so a simpler representation is given by 

sj, l =sj;  

B j :=  -111 (5.2) 

Cj, 1 @ , 2 B j  = A~ (5.3) 

Sj,2 = Sj 

c;.lc;,2=c; 

= 1 1 ) ;  8 j = 1 - 1 )  Aj (5.4) 
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Using these definitions, we can write the Hamiltonian .2/fu, 2 as 

N 

~'~x, 2 = 2x(K21 -- K 2) • sj 
j - - 1  

+ 2  y~ ci@si+l""sj  t 
1 < ~ i < j ~ N  

x [ x ( K ~ - K 2 ) ( I  + s , s / ) + ( K ~  2 , - x K; )  si + (x  2K2 - 2 K3)s)] (5,5) 

This Hamiltonian can be expressed in terms of fermion operators as 
follows. 

Define 
k 

~'~ := I1 ( - s )  dk:= icks~ 
j-1 (5.6) 
1 

a~ := ~ (ck+_id~), f2" := Pk , a~  

Then the f ~  satisfy fermion anticommutation relations 

I f , ,  f s  + = •(j, k); [ f j , f k ]  + = [ f + , f ; ] +  = 0  (5.7) 

In terms of these fermion operators, the Hamiltonian becomes 

N 

~ N , 2 = 2 x ( K ~ - K ~ )  E ( f T f ] - - f z . f f l )  
j = l  

+ 2  ~ ( - 1 ) * - * [ 2 x ( K 2 - K 2 ) ( f , f j  - f [ s  
l ~ i < j < ~ N  

+ (K2-x2K2)(fT- +fs )(f+ +f f  )-(x2K2-K2)(f7 - f .  )(fj f f  )] 
(5.8) 

This Hamiltonian is quadratic in fermion operators and can be 
diagonalized (see, e.g., ref. 10). For M = 2  the Zamolodchikov model is 
equivalent to the critical 2D free-fermion model (s) (cf. refs. 11 and 12). 

6. N = 2 :  THE T W O - C O L U M N  CASE 

For N =  2 we restrict ourselves to the subspace where 

Sl,kS2.k= 1, Vk (6.1) 

(with this choice ~;4'~2, M corresponds again to the Zamolodchikov model 
with periodic boundary conditions), i.e., we consider the space spanned by 

Ak := 111) and Bk := 1-- 1 - -1) ,  gk (6.2) 
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It is easy to verify that 

S l , k A k  = S 2 , k A  k = M/c , S l , k B k  = S 2 , k B k  = - - B  k 

C l , k C 2 , k A k  = B k ,  C l , k C 2 , k B k  = A k  (6.3) 

Equation (6.3) can be represented more simply by taking 

$2, k ~ SI, k 

CI,kC2, k ~ C1, k 

Ak= 11), B k= 1 - 1 )  (6.4) 

Using these definitions, we can express the Hamiltonian ~ , M  by (omitting 
the index 1 on the operators) 

M 
= 2 �9 --K3Sk l( l+XSk~l)  2] 

k = l  

Using 
Ck Sk = --idk 

we find that this becomes 
M 

~uf2,M= ~ 2x(KZ-K~)(s/c+c~ iCk) 
k = l  

--iK~(1 +X2)Ck_ldk+iK~(1 +X 2) d~ lCk 

(6.5) 

(6.6) 

(6.7) 

This Hamiltonian is again quadratic in fermion operators (of X Y  type) and 
solved. Note that ~ , M  commutes with 

M 

S : =  I ]  sk (6.8) 
k - - 1  

For N =  2 the Zamolodchikov model is again equivalent to the critical 2D 
free-fermion model. Is) 

7. N = 3 :  T H E  T H R E E - C O L U M N  C A S E  

For N = 3  we will consider here only the special case x = 0 ,  i.e., 
K2 = K4 = 0. Then the Hamiltonian 3f3, M can be written 

~ , M  = --iK~X3,M + iK~ Y3, M 
M 

= ~ - i K ~ [ X I k + X 2 + X  3 ] + i K ~ [ Y I +  Y2k+Y~] (7.1) 
k = l  
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where 

X ~ ' =  

Y ~ . :  

X 2 ' =  

y 2 . =  

lC2, kC3,kC2, k 1C3,k IS2, k~ 

lC2, kC3, kC2, k -  1C3, k IS3, k - 1 

lCl,kC2, k C l , k  1C2, k - 1Sl,k~ 

ICl,kC2, k C l , k  ! C2, k 1S2, k -  ! 

IC l , k C 3 , k C L k  -- 1C3, k - -  I S l , kS2 ,  k~ 

1C l , kC3 , kC i , k - - lC3 ,  k IS2, k - l S 3 , k  1 

(7.2) 

The X2 satisfy the following commutation and anticommutation relations: 

[Xk, Xk] + = 26(c~, f i) 
X ~ ~+  2 ~ Y~+'l  =0, [ k ] =0  (7.3) [ X k ,  X 2 + l ]  + = 0 ,  [ X k ,  ~ ' k +  IA + , X k + l  

[ Y } , Y # ]  =0, I j - k l  ~>2 

(here and below e and fl should be interpreted modulo 3). The Y~. satisfy 
identical relations and commute with the Yj ~, 

[)(~, Y2] = 0, Vcq fl, j, k (7.4) 

We now consider an abstract Hamiltonian, defined by (7.1), (7.4), and 
by (7.3) and the analogous relations for the Y~. Our previous Hamiltonian 
is then a specific representation of these relations, given by (7.2). Using 
(7.3) and taking periodic boundary conditions for X and Y, i.e., 

~ ~ = ~ ( 7 . 5 )  X M  + 1 = X I ,  YM + i YI 

it follows that such 
following operators: 

an abstract Hamiltonian (7.1) commutes with the 

~ k ~ k ~ k 

M 

c~(x) = l ]  x~ 
k = !  

M 

c3(x) = I] x~ 
k - - I  

M 
C 4 ( X )  " E 1 1 2 2 _,~ Y 3 X 3  = ( X k X ~ + I + X , X ~ + I _ ~ .  k ,+~ 

k - - I  

2 3 3 1 

(7.6) 
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and if M is a multiple of three, -H3,a4 also commutes with 

M/3 
CS(x) :: i] X2 Xl 3k 3k + 1 

k - 1  

M/3 
c 6 ( x )  : =  [ I  x~+,x~+~ 

k = l  

(7.7) 

Finally, S3,M of course also commutes with C~(Y) ,  C2(Y), C3(y),  and 
C4(y), and, if M is a multiple of three, with CS(Y)  and C6(y), where all 
these operators are obtained by replacing X by Y in the above definitions. 

Since X3, M and Y3, M commute, we will henceforth focus on X3,~t. It is 
convenient to define new operators Z~ by 

V~ + 2k (7,8) Z ~ : =  ~k 

These new operators then satisfy 

[Z~, Z{] + = 26(~, fi) 

. . . .  7 ~ + 2 3  -~--0 (7.9) [Zk,  Zk+l]  _ : - 0 ,  [Zk,  Z~k~ 11]+ = 0 ,  [Zka~k+ld + 

[Z~, Z ~ ] _  =0 ,  [ j - k ]  >>.2 

Note that if M is not a multiple of three, the transformation (7.8) affects 
the boundary conditions. Periodic boundary conditions, e.g., are related by 

X ~  = ~ ~ - Z ~  +2~' +1 Xll-+ZM+I--  

Z ~ /  ~ ~ _ y ~  - -  2M 
+ l : Z 1  +--+ X M + I  - -  ~. 1 

(7.10) 

We are interested in an operator defined by 

X3,M : ~  (Z~ + Z2+Z2) (7.11) 
k 

and by the relations (7.9). Assuming periodic boundary conditions for the 
Z's, such an operator commutes with 

8~(z) :: z~z ,~z~ 

( Z k Z k + l  + Z k Z ~ + l  + Z k Z k + t  
k 

3 2 3 t Z 1 7 3  + Z k Z  k + ) + Z k Z k + l  +l k ~ k + l  

(7.12) 
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and, if M is a multiple of 3, also with 

~2(Z) = 

C 3 ( Z )  : 

~ ( z )  : 

O~(z) : 

l 1 
~1 Z 3 k Z  3k + l 
k 

I ~ Z  1 Z 1 3 k +  I 3 k + 2  
k 

z ~ z  ~ 3 k +  1 
k 

(7.13) 

[I Z~k+I Z2 3 k + 2  
k 

Of course, a representation of the commutation and anticommutation rela- 
tions (7.9) can be derived from (7.2), using (7.8). A simpler representation, 
however, is found in the following way. Since all Z~ commute, we can 
define ~ to be their common eigenvector such that 

Z ~ = ~ ,  Vk (7.14) 

We will consider the subspace generated by this vector. This subspace is 
spanned by the basis vectors 

.44 

r : ~ (Z~)(1 ,~j~n r (7.15) 
j = t  

where 

),k= -}-1 

Using (7.9), it is easy to check that 

z l @ ~tl,...,)*M = ~ k -  l ~kAk  + I I/ /)d,-. ,2M 

and, taking Z~=IZkZ, ,"  l 2 

Z 3 " t ~ k 2 k  ~/)q , . . . , - / .k  ,..., ).M kOa,...,~k,...,~-~, = l,'tk 1 + 1 

(7.16) 

(7.17) 

A representation of these relations is given by 

Z lk ~-- Sir - I SkSk + l 

Z 2 = C k  

Z 3 =  - - S k _ l d k S k + l  

(7.18) 
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Hence X3,M can be represented by 

M 

X3,~t = ~ (Sk - lSkS~+I+C~--Sk  ldks~+l)  (7.19) 
k ~ l  

Although X3,M describes a limiting case of the exactly solved 
Zamolodch ikov  model, we have so far not  succeeded in obtaining its eigen- 
values for finite M. If this is a free-fermion model,  one would expect to see 
some "direct sum" structure similar to the cases N =  2 and M = 2. In fact, 
we have failed to observe any such structure either algebraically or in 
numerical  calculations performed by Dr. M. Batchelor. 

NOTE A D D E D  IN P R O O F  

Defining Z i : =  ~2k Z2 (i = 1, 2, 3), and using (7.9) and periodic 
boundary  conditions, one can prove [ Z  i, [ Z  i, [ Z  i, [ Z  i , Z  j ] ] ] ] =  
4 0 [ Z  ~, [ Z  ~, Z i ] ] -  1 4 4 Z  j ( i =  1, 2, 3; j =  1, 2, 3; iC j ) .  These relations 
are reminiscent of the Do l a n -Gra dy  relations (L. Do lan  and M. Grady,  
Phys. Rev. D25:1587 (1982)). 
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